You Call That Good Data? How to Survive a Consent Decree Flow Monitoring Program

September | 2011
You Call That Good Data? How to Survive a Consent Decree Flow Monitoring Program

Project Team

HRSD
Kim Peterson
Phil Hubbard
Laura Kirkwood
Sarah Crawford

Brown and Caldwell
Chris Wilson
Joe Swaim
Crystal Muller
Jordan Kincaid
Lisa Jeffrey
HRSD Service Area

- Serves Southeast Virginia
- 1.6 million people
- 430 miles of force mains
- 80+ PS
- 50 miles gravity pipe
- 9 major treatment plants
Background

• Previous Consent Orders
 • Norfolk
 • Hampton

• Master Metering Program contracts
 • Boundary meters
 • Treatment plants
 • Some pumping stations
 • Data collected through SCADA

• Miscellaneous gravity flow monitoring
HRSD Flow Monitoring Program

- New Consent Order and Consent Decree
 - Regional Hydraulic Model
- Expand existing network
 - 117 pressure monitoring sites
 - 137 flow monitoring sites
 - 64 rain gauge sites
 - 21 groundwater monitoring sites
 - 39 IWD sites
- Significant installation effort
 - Negotiated schedule
- Standardized equipment
Program Changes

- Pressure-side to gravity flow metering in some locations
- Meter selection
- Location changes
- Policy changes
- Schedule delays

- Kept regulators in the loop
Data Collection

- 12 month program
- Utilizing Telog® system
- Developed Data Quality Standards and Procedures (DQSAP)
- Reliability requirements:
 - 75% for each individual meter during each monthly monitoring period
 - 90% data reliability for all data for each sensor type during qualifying wet weather events
DQSAP

- Additional measurements recorded for QA/QC purposes:
 - wet well levels
 - pump run status
 - pump speed
- ~190,000 data points go through a daily QA/QC process to ensure data reliability
Data Review Process

• Increased staff based on amount of data to review
 • HRSD Data Analysis Section (3+ FTEs)
 • Consultant staff (2+ FTEs)
 • Flow monitoring vendors

• Manual reviews and automated reviews

• Automation made process more efficient
Automated Alerts

• Utilized Telog® Enterprise software
• Data stored in SQL server database
• Deviation measured as compared to “normal” conditions
Automated Alerts (continued)

• Alert automation using SQL functions that were programmed within the software as well as the data server by Telog®

• Added calculated measurements in which the alert SQL statements would calculate from

• More than 3,000 alerts programmed for the QA/QC process
Alert Definitions

<table>
<thead>
<tr>
<th>Alert</th>
<th>Potential Anomaly</th>
<th>Regime</th>
<th>Time Step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow, sensor</td>
<td>Potential sensor fouling and/or failure as indicated by flat lining and where there is insufficient difference between minimum, average, and maximum values.</td>
<td>Wet and dry weather</td>
<td>Hourly</td>
</tr>
<tr>
<td>Flow, deviation</td>
<td>% deviation from a 4-week dry weather rolling average</td>
<td>Dry weather</td>
<td>Hourly, Daily</td>
</tr>
<tr>
<td>Flow, upstream</td>
<td>Upstream flow exceeds downstream</td>
<td>Wet and dry weather</td>
<td>Daily</td>
</tr>
<tr>
<td>Flow, downstream</td>
<td>Downstream flow less than upstream</td>
<td>Wet and dry weather</td>
<td>Daily</td>
</tr>
<tr>
<td>Flow, wet weather peak</td>
<td>Peak factor outside of expected range</td>
<td>Wet weather</td>
<td>Daily</td>
</tr>
<tr>
<td>Pressure, dry weather peak</td>
<td>Peak pressure compared to a 4-week dry weather rolling average</td>
<td>Dry weather</td>
<td>Hourly</td>
</tr>
<tr>
<td>Pressure, sensor</td>
<td>Potential sensor fouling and/or failure as indicated by flat lining and where there is insufficient difference between minimum, average, and maximum values.</td>
<td>Wet and dry weather</td>
<td>Hourly</td>
</tr>
<tr>
<td>Pressure Deviation</td>
<td>% deviation from a 4-week dry weather rolling average</td>
<td>Dry weather</td>
<td>Hourly, Daily</td>
</tr>
<tr>
<td>Pressure, wet weather peak</td>
<td>Peak pressure outside of expected range</td>
<td>Wet weather</td>
<td>Daily</td>
</tr>
<tr>
<td>Rainfall</td>
<td>Rainfall 25% greater than adjacent gauge</td>
<td>Wet Weather</td>
<td>Hourly</td>
</tr>
</tbody>
</table>
Flow/Pressure Deviation Alert

• Useful in identifying:
 • Inflow/Infiltration (I/I) effects
 • Recent calibration
 • System diversion
 • System bypass
 • Instrument fouling or failure
Flow Deviation Alert
Pressure Alert
Automated Alert Exceptions

- Pump station flows do not always produce a “typical” diurnal curve and daily manual reviews may be necessary
Automated Work Orders

- Telog® SQL alerts can be sent by SMS text, email, or paging system
- Email alerts are routed into the Numara Track-It!® software to create automated work orders
- Generated continuously (overnight, weekends, and holidays) and are ready for the analysts to analyze upon their return
- Automated work orders are reviewed daily and deemed either valid or invalid
Track-It! Work Order SOP

• Data analyst reviews automated alert work orders (or generates work order based on manual review) and forwards to supervisor with sufficient documentation

• Supervisor reviews and issues to HRSD Instrumentation or Interceptor Operations staff for field investigation

• Upon resolution, Track-It! work order is closed

• Dashboard and reporting useful for management
Data Reliability

<table>
<thead>
<tr>
<th>Invalid due to:</th>
<th>Valid due to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Site Maintenance</td>
<td>Data Adjusted</td>
</tr>
<tr>
<td>Sensor Drift</td>
<td>Normal Trend</td>
</tr>
<tr>
<td>Sensor Failure</td>
<td>Operational Change</td>
</tr>
<tr>
<td>Networking Issue</td>
<td>Seasonal Trend</td>
</tr>
<tr>
<td>Power Failure</td>
<td>User Specified</td>
</tr>
<tr>
<td>Site Constraint</td>
<td></td>
</tr>
<tr>
<td>Unknown Causes</td>
<td></td>
</tr>
</tbody>
</table>

Approximately 2,000 alerts received and resolved through the Numara Track-It!® software on a monthly basis.
Flagging Invalid Data

- Need to close the loop on data reliability
- Analyst identifies start and end times for the invalid data
- From the timestamp highlighted in Telog®, analyst can report the percent of valid/invalid data for the selected timeframe
- Standard report was created by Telog® software engineers
Flagging Invalid Data
Change in Requirements

• Original data reliability requirements impractical

• Intent was to provide sufficient dry weather data for model calibration

• Worked with regulators to explain issue

• Adjusted requirement to 75% reliability at 90% of all sites each month AND 90% of model calibration sites
Other DQSAP Changes

- Alerts have been adjusted due to certain site specific conditions
 - Gloucester Line
- Specific alerts may need to be adjusted as operational changes are made to the interceptor system
 - Rerouting flows for CAP
Final Results

• Collected and reviewed more than 70,000,000 points of raw data

• Captured FPR data from 19 wet weather events

• Met updated reliability standards for all 12 months of program

• Regional Hydraulic Model calibration events had aggregate data reliability between 95% and 100% for all three required events
Reporting

- Interim Report
 - After first 5 months of data

- Final Report
 - Overall Summary
 - Program Changes
 - Data Reliability
 - Tabular Data
 - Graphs/Scatterplots
 - Raw data
Report Figures

Dry Weather Average Flow = 18,875 gpm
Wet Weather Average Flow = 26,561 gpm
Rainfall Derived I/I = 62,269,299 gal
Total Rainfall = 2.22 in
Lessons Learned

- Spend lots of time identifying best places for metering
- Allow schedule float for permanently installed meters
- Plan staffing based on level of data review efforts
- Automate alerts
- Utilize alert tracking system
- Keep regulators in the loop
Questions?
cwilson@brwncaId.com