Five of the most popular uses of Telog’s HPR-31, hydrant pressure recorder, are:

- **Customer Pressure Complaint**
- **Hydrant Capacity**
- **Fire Flow Testing**
- **Calibrate Hydraulic Models**
- **C-factor Testing**

Everything You Need is Included in These Two Convenient Kits
Fire Flow Testing

APPLICATION
- One person can do it all
- Based on NFPA 14 and the AWWA M17 guidelines
- More accurate & reliable method than pitot gauges
- No exposed electronics — perform test in the rain

OVERVIEW

Using Telog’s HPR-31 units for fire flow testing provides you with more accurate information than conventional, manual methods of testing. Because the HPR is always recording and time stamping data, the testing can be performed and completed by one person. The testing procedure is based on guidelines in the NFPA 14 and the AWWA M17 manuals, so you will be sure to meet regulation requirements.

APPLICATION

Benefits

- One person can do it all
- Based on NFPA 14 and the AWWA M17 guidelines
- More accurate & reliable method than pitot gauges
- No exposed electronics — perform test in the rain

Customer Pressure Complaint

APPLICATION

Benefits

- One person can do it all
- More accurate and reliable than chart recorders
- No exposed electronics — collect data in the rain
- Electronically documented test results
- Easy to use kits available

OVERVIEW

One of the most popular uses for the Telog Hydrant Pressure Recorders (HPRs) is to monitor and analyze customer pressure complaints. The HPR is ideally suited for this application because it is rugged, highly portable and can give a complete, time stamped picture of the pressure differential between the customer’s water pressure and the water pressure being delivered by the local utility.

Data may be collected and viewed on-the-spot or back in your office. Once the data has been collected from both HPRs, it can be easily graphed in Telogers software.

In the example to the left, it is clear that there is approximately a 20 psi difference between the pressure at the customer’s house and the water pressure being supplied by the water utility.

A graph of the data can be shown to the customer so that they clearly see the pressure differential and that the utility has more than adequate water pressure in the main.

Attach an HPR to the hydrant that is closest to the customer’s building and on the same main.

Attach a second HPR to the customer’s water line. This can be done using a garden hose and an HPR with Telog’s garden hose adapter. Fill the hose with water and attach the HPR. Once the HPR is securely attached, completely open the customer’s spigot.

Pressure and flow data may be collected with your Telog DTU and transferred to your computer for viewing and analysis in Telogers software. You will be able to view a clear picture of the entire flow test.
C-factor Testing

APPLICATION

- One person can do it all
- More accurate and reliable than pitot gauges
- No exposed electronics — perform test in the rain

OVERVIEW

C-factor testing with HPR units will measure discharge and head loss. By using HPRs, a task which normally requires three or more people becomes a one-person job. There is no need to station a person at each hydrant. The HPR automatically records and time stamps the data. This information can then be used to calculate pipe roughness in terms of Hazen-Williams C-factor.

Benefits

- One person can do it all
- More accurate and reliable than pitot gauges
- No exposed electronics — perform test in the rain

Add to Your Flushing Program

APPLICATION

- Hydrant capacity testing
- Capture peak flow rate for color coding
- Reduce the amount of unaccounted for water
- One person can do it all

OVERVIEW

Numerous water authorities have instituted flushing programs to help maintain the health of their distribution system. In many mains, water moves through at less than two miles per hour. Flushing removes built-up sediment that restrict the water. When you use the Telog Hydrant Flow System you can simultaneously accomplish two other important functions — hydrant capacity testing and reduce unaccounted for water.

Hydrant Capacity Testing

Bonnet and Cap Color-code

- **RED** — Less than 500 GPM
- **ORANGE** — 500 to 999 GPM
- **GREEN** — 1000 to 1499 GPM
- **LIGHT BLUE** — 1500 or more GPM

This hydrant flowed less than 500 gpm, therefore, its caps and bonnet are painted **RED**.

Unaccounted for Water

When you use Telog’s Hydrant Flow System to flush your hydrants, the total gallons flowed during a hydrant flush are automatically recorded. This reduces the amount of unaccounted for water in your distribution system.
Calibrating Hydraulic Models

Use exported HPR data in your modeling software for:
- Model calibration data
- Steady-state analysis
- Extended-period analysis
- Data is stamped with time and date
- More accurate, reliable and flexible than pitot gauge

Fire flow testing and C-factor testing are two of the most common field tests used for model calibration. Using Telog HPRs can greatly simplify that testing (see Telog’s application notes on fire flow & C-factor testing) and the data from Telogers software can be exported to many of today’s software modeling packages.

In time series analysis you can study your system over an extended period of time. Fill and drain cycles of tanks, pump and valve response, as well as daily fluctuations in usage, can all be simulated using time-series analysis. The HPR easily collects and exports these data to your modeling software package.

All HPR data are date and time stamped. The combination of HPRs and Telogers software is well suited to collecting, displaying and exporting time series data. The pressure data in the graph to the left was stored in 1 minute intervals, but for our time-series analysis we wanted 15 minute averages from 3 pm to 6 pm. As you can see, the tabular data is displayed in 15 minute averages and the desired period is highlighted.

There are several ways to export data from Telogers software. Data can easily be exported to 3rd party software packages such as Microsoft Excel, Microsoft Word, various HMI and Modeling packages.

Telog has an ongoing commitment to continuously work with hydraulic modeling software manufacturers to further simplify data transfer between software packages.

Typical Applications Using Telog Recorders

SSO/CSP Event Monitoring
- Wireless communication or direct connect options
- Alarm notification
- Time stamped events
- Record level and duration of events

Inflow & Infiltration Alarm Notification
- Rain fall data and wastewater flow data are sent to the host computer via wireless communication.
- Data is correlated at the host computer to provide alarm notification.

Water Level Recording
- Wireless communication or direct connect options
- Alarm notification
- Time stamped events
- Record level and duration of events

Tank Monitoring
- Chemical, fuel, or water level and transaction monitoring
- Inventory management
- Level alarm notification
- Refill scheduling
- Wireless and solar power options

Environmental
- Rainfall
- pH
- Windspeed
- Temperature
- Humidity

Typical Applications Using Telog Recorders

Chemical, fuel, or water level and transaction monitoring
Inventory management
Level alarm notification
Refill scheduling
Wireless and solar power options

Rainfall
pH
Windspeed
Temperature
Humidity

Anatomy of HPR-31 Kits

HPR Kit II-D
- Heavy Duty Carrying Case
- 2 HPR-31 Units
- Data Transfer Cables
- Telog DTU for Data Transfer

Flow Test Kit II-D
- Heavy Duty Carrying Case
- 2 HPR-31 Units
- Garden Hose Adapter
- Data Transfer Cables
- Telog DTU for Data Transfer
HPR-31 Specifications

Input
- **Type:** Strain gauge, isolated pressure sensor
- **Range (psi):**
 - 100
 - 200
 - 300
 (contact Telog for other ranges)
- **Over Pressure (psi):**
 - 300
 - 600
 - 1000
- **Burst Pressure (psi):**
 - 850
 - 1000
 - 1000
- **Resolution:** 0.025% of full scale, 12-bit
- **Accuracy:**
 - +0.25% of full scale
 - at constant temperature
 - +0.01% of full scale per °C

Recording
- **Sample rate:** Programmable from 4/sec up to 8 hours
- **Data interval:** Programmable from 1/sec up to 8 hours
- **Values saved:** Selectable min, avg & max per interval
- **Memory:** 128 Kbytes (~80,000 data values)

Interface
- **Type:** RS-232, 300 to 19.2 Kbaud
- **Connector:** Circular 4 pin watertight

Battery
- **Type:** Single AA Lithium (Safe LS 14500 or equal)
- **Life:** 5 years typical

Environmental and Mechanical
- **Temperature**
 - Operating: -10° to 65°
 - Storage: -40° to 65°
- **Humidity:** 0-100% relative humidity
- **Enclosure:** NEMA 4x / IEC IP65
- **Size:** 12.70 cm diameter x 8.89 cm
- **Thread:**
 - Hydrant mount: 2.50° NHT standard,
 - Internal mount: 1/4 NPT

Support Software
- **S-3PC:** Telogers for Windows
- **S-3PCL:** Telogers for Windows Lite
- **Telog Model DTU-R:** Data Transfer Unit; IP-67 rated PDA running Palm OS and Telog application program

Computer Requirements
- **For S-3 PC or S-3PCL:** IBM compatible computer with a 586/133 MHz or higher processor running on Microsoft Windows 95/98/NT/2000/XP, at least 32 MB of RAM, a hard disk with at least 200 MB of free space and a pointing device.

Telog Instruments, Inc.
830 Canning Parkway, Victor, NY 14564-8940, USA
Phone: 585.742.3000 • Fax: 585.742.3006
E-mail: TelogSales@telog.com • www.telog.com

Specifications within this brochure are subject to change without notification.
Telog is a registered trademark and Telogers is a trademark of Telog Instruments, Inc.
Palm Pilot is the registered trademark of Palm, Inc.
Microsoft, Windows 95/98/2000/NT/2000/XP are registered trademarks of Microsoft Corporation.
IBM is the registered trademark of International Business Machines.